41 research outputs found

    Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange

    Get PDF
    Boreal forest floor emits biogenic volatile organic compounds (BVOCs) from the understorey vegetation and the heterogeneous soil matrix, where the interactions of soil organisms and soil chemistry are complex. Earlier studies have focused on determining the net exchange of VOCs from the forest floor. This study goes one step further, with the aim of separately determining whether the photosynthesized carbon allocation to soil affects the isoprenoid production by different soil organisms, i.e., decomposers, mycorrhizal fungi, and roots. In each treatment, photosynthesized carbon allocation through roots for decomposers and mycorrhizal fungi was controlled by either preventing root ingrowth (50 mu m mesh size) or the ingrowth of roots and fungi (1 mu m mesh) into the soil volume, which is called the trenching approach. Isoprenoid fluxes were measured using dynamic (steady-state flow-through) chambers from the different treatments. This study aimed to analyze how important the understorey vegetation is as a VOC sink. Finally, a statistical model was constructed based on prevailing temperature, seasonality, trenching treatments, understory vegetation cover, above canopy photosynthetically active radiation (PAR), soil water content, and soil temperature to estimate isoprenoid fluxes. The final model included parameters with a statistically significant effect on the isoprenoid fluxes. The results show that the boreal forest floor emits monoterpenes, sesquiterpenes, and isoprene. Monoterpenes were the most common group of emitted isoprenoids, and the average flux from the non-trenched forest floor was 23 mu gm(-2) h(-1). The results also show that different biological factors, including litterfall, carbon availability, biological activity in the soil, and physico-chemical processes, such as volatilization and absorption to the surfaces, are important at various times of the year. This study also discovered that understorey vegetation is a strong sink of monoterpenes. The statistical model, based on prevailing temperature, seasonality, vegetation effect, and the interaction of these parameters, explained 43% of the monoterpene fluxes, and 34-46% of individual alpha pinene, camphene, beta-pinene, and Delta(3)-carene fluxes.Peer reviewe

    Interannual and Seasonal Dynamics of Volatile Organic Compound Fluxes From the Boreal Forest Floor

    Get PDF
    In the northern hemisphere, boreal forests are a major source of biogenic volatile organic compounds (BVOCs), which drive atmospheric processes and lead to cloud formation and changes in the Earth's radiation budget. Although forest vegetation is known to be a significant source of BVOCs, the role of soil and the forest floor, and especially interannual variations in fluxes, remains largely unknown due to a lack of long-term measurements. Our aim was to determine the interannual, seasonal and diurnal dynamics of boreal forest floor volatile organic compound (VOC) fluxes and to estimate how much they contribute to ecosystem VOC fluxes. We present here an 8-year data set of forest floor VOC fluxes, measured with three automated chambers connected to the quadrupole proton transfer reaction mass spectrometer (quadrupole PTR-MS). The exceptionally long data set shows that forest floor fluxes were dominated by monoterpenes and methanol, with relatively comparable emission rates between the years. Weekly mean monoterpene fluxes from the forest floor were highest in spring and in autumn (maximum 59 and 86 mu g m(-2) h(-1), respectively), whereas the oxygenated VOC fluxes such as methanol had highest weekly mean fluxes in spring and summer (maximum 24 and 79 mu g m(-2) h(-1), respectively). Although the chamber locations differed from each other in emission rates, the inter-annual dynamics were very similar and systematic. Accounting for this chamber location dependent variability, temperature and relative humidity, a mixed effects linear model was able to explain 79-88% of monoterpene, methanol, acetone, and acetaldehyde fluxes from the boreal forest floor. The boreal forest floor was a significant contributor in the forest stand fluxes, but its importance varies between seasons, being most important in autumn. The forest floor emitted 2-93% of monoterpene fluxes in spring and autumn and 1-72% of methanol fluxes in spring and early summer. The forest floor covered only a few percent of the forest stand fluxes in summer.Peer reviewe

    Using in situ GC-MS for analysis of C-2-C-7 volatile organic acids in ambient air of a boreal forest site

    Get PDF
    An in situ method for studying gas-phase C-2-C-7 monocarboxylic volatile organic acids (VOAs) in ambient air was developed and evaluated. Samples were collected directly into the cold trap of the thermal desorption unit (TD) and analysed in situ using a gas chromatograph (GC) coupled to a mass spectrometer (MS). A polyethylene glycol column was used for separating the acids. The method was validated in the laboratory and tested on the ambient air of a boreal forest in June 2015. Recoveries of VOAs from fluorinated ethylene propylene (FEP) and heated stainless steel inlets ranged from 83 to 123 %. Different VOAs were fully desorbed from the cold trap and well separated in the chromatograms. Detection limits varied between 1 and 130 pptv and total uncertainty of the method at mean ambient mixing ratios was between 16 and 76 %. All straight chain VOAs except heptanoic acid in the ambient air measurements were found with mixing ratios above the detection limits. The highest mixing ratios were found for acetic acid and the highest relative variations for hexanoic acid. In addition, mixing ratios of acetic and propanoic acids measured by the novel GC-MS method were compared with proton-mass-transfer time-off-light mass spectrometer (PTR-TOFMS) data. Both instruments showed similar variations, but differences in the mixing ratio levels were significant.Peer reviewe

    Complexity of downy birch emissions revealed by Vocus proton transfer reaction time-of-flight mass spectrometer

    Get PDF
    Biogenic volatile organic compounds (BVOCs) are known to strongly influence the global climate by affecting various atmospheric constituents such as oxidants and aerosols. Among the several BVOCs that are emitted continuously into the atmosphere, studies have shown that up to 96% of the emissions have been missed out by current analytical techniques. In this study, we used a Vocus proton-transfer-reaction time-of-flight mass spectrometer (Vocus) to characterize and quantify emissions from a branch of a downy birch tree at a boreal forest site in Hyytiala, Finland in August 2019. During the measurement period, we were able to observe real-time emissions of hydrocarbons with up to 20 carbon atoms and oxygenated compounds (OVOCs) with up to 4 oxygen atoms. OVOCs accounted for around 90% of the total observed emissions with the largest contribution from C8H8O3 (0.37 mu gg(-1)h(-1); similar to 60% of total). For the first time, emissions of diterpenes (C20H32, C20H36, and C20H38) were observed from downy birch tree, although in minor quantities (0.1% of total emissions). During this late growing season, C10H16 and C10H14 contributed similar to 7% in total emissions, while the sum of C5H8, C15H22, and C15H24 contributed around similar to 3%. The branch experienced abiotic stress during the measurement period, which might explain the unusually high emissions of C8H8O3. Standardized emission potentials are reported for all compounds using two Guenther algorithms. While emissions of most compounds fit well with either of the two algorithms, emissions of certain compounds like C8H8O3 could not be explained by either suggesting the influence of other factors besides temperature and light. Vocus PTR-TOF-MS can help identify a diverse range of molecules even if emitted in minute quantities. The BVOCs detected from birch emissions may be important in the formation of secondary organic aerosols but their implications in the atmosphere need to be verified with further studies.Peer reviewe

    OH reactivity from the emissions of different tree species : investigating the missing reactivity in a boreal forest

    Get PDF
    In forested area, a large fraction of total hydroxyl radical (OH) reactivity remains unaccounted for. Very few studies have looked at the variations in total OH reactivity from biogenic emissions. In the present study, we investigate the total OH reactivity from three common boreal tree species (Scots pine, Norway spruce, and downy birch) by comparing it with the calculated reactivity from the chemically identified emissions. Total OH reactivity was measured using the comparative reactivity method (CRM), and the chemical composition of the emissions was quantified with two gas chromatographs coupled with mass spectrometers (GC-MSs). Dynamic branch enclosures were used, and emissions from one branch of a tree at the time were measured by periodically rotating between them. Results show that birch had the highest values of total OH reactivity of the emissions (TOHRE), while pine had the lowest. The main drivers for the known reactivity of pine and spruce were monoterpenes and sesquiterpenes. Birch emissions were dominated by sesquiterpenes, but monoterpenes and green leaf volatiles (GLVs) were present as well. However, calculated reactivity values remained low, leading to the highest missing fraction of reactivity (> 96 %), while pine and spruce had similar missing reactivity fractions between 56% and 82% (higher in the spring and decreasing as the summer proceeded). The high average values were driven by low-reactivity periods, and the fraction of missing reactivity got smaller for pine and spruce when the TOHRE values increased. Important exceptions were identified for periods when the emission profiles changed from terpenes to GLVs, a family of compounds containing a backbone of six carbon atoms with various functionalities (e.g. alcohols, aldehydes, esters) that indicate that the plant is suffering from stress. Then, very high TOHRE values were measured, and the missing fraction remained high. This study found a different trend in the missing OHRE fraction of the Norway spruce from spring to autumn compared to one previous study (Nolscher et al., 2013), which indicates that additional studies are required to fully understand the complexity of biogenic reactive emissions. Future studies of boreal trees in situ should be conducted to confirm the findings presented.Peer reviewe

    Sesquiterpenes dominate monoterpenes in northern wetland emissions

    Get PDF
    We have studied biogenic volatile organic compound (BVOC) emissions and their ambient concentrations at a sub-Arctic wetland (Lompolojankka, Finland), which is an open, nutrient-rich sedge fen and a part of the Pallas-Sodankyla Global Atmosphere Watch (GAW) station. Measurements were conducted during the growing season in 2018 using an in situ thermal-desorption-gaschromatograph-mass-spectrometer (TD-GC-MS). Earlier studies have shown that isoprene is emitted from boreal wetlands, and it also turned out to be the most abundant compound in the current study. Monoterpene (MT) emissions were generally less than 10 % of the isoprene emissions (mean isoprene emission over the growing season, 44 mu g M-2 h(-1)), but sesquiterpene (SQT) emissions were higher than MT emissions all the time. The main MTs emitted were alpha-pinene, 1,8-cineol, myrcene, limonene and 3 Delta-carene. Of SQTs cadinene, beta-cadinene and alpha-farnesene had the major contribution. During early growing season the SQT/MT emission rate ratio was similar to 10, but it became smaller as summer proceeded, being only similar to 3 in July. Isoprene, MT and SQT emissions were exponentially dependent on temperature (correlation coefficients (R-2) 0.75, 0.66 and 0.52, respectively). Isoprene emission rates were also found to be exponentially correlated with the gross primary production of CO2 (R-2 = 0.85 in July). Even with the higher emissions from the wetland, ambient air concentrations of isoprene were on average > 100, > 10 and > 6 times lower than MT concentrations in May, June and July, respectively. This indicates that wetland was not the only source affecting atmospheric concentrations at the site, but surrounding coniferous forests, which are high MT emitters, contribute as well. Daily mean MT concentrations had high negative exponential correlation (R-2 = 0.96) with daily mean ozone concentrations indicating that vegetation emissions can be a significant chemical sink of ozone in this sub-Arctic area.Peer reviewe

    Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season

    Get PDF
    We present spring and summer volatile organic compound (VOC) emission rate measurements from Norway spruce (Picea abies L. Karst) growing in a boreal forest in southern Finland. The measurements were conducted using in situ gas chromatograph with 1 to 2 h time resolution to reveal quantitative and qualitative short-term and seasonal variability of the emissions. The measurements cover altogether 14 weeks in years 2011, 2014 and 2015. Monoterpene (MT) and sesquiterpene (SQT) emission rates were measured all the time, but isoprene only in 2014 and 2015 and acetone and C-4-C-10 aldehydes only in 2015. The emission rates of all the compounds were low in spring, but MT, acetone, and C-4-C-10 aldehyde emission rates increased as summer proceeded, reaching maximum emission rates in July. Late summer mean values (late July and August) were 29, 17, and 33 ng g(dw)(-1) h(-1) for MTs, acetone, and aldehydes respectively. SQT emission rates increased during the summer and highest emissions were measured in late summer (late summer mean value 84 ng g(dw)(-1) h(-1)) concomitant with highest linalool emissions most likely due to stress effects. The between-tree variability of emission pattern was studied by measuring seven different trees during the same afternoon using adsorbent tubes. Especially the contributions of limonene, terpinolene, and camphene were found to vary between trees, whereas proportions of alpha-pinene (25 +/- 5 %) and beta-pinene (7 +/- 3 %) were more stable. Our results show that it is important to measure emissions at canopy level due to irregular emission pattern, but reliable SQT emission data can be measured only from enclosures. SQT emissions contributed more than 90% of the ozone reactivity most of the time, and about 70% of the OH reactivity during late summer. The contribution of aldehydes to OH reactivity was comparable to that of MT during late summer, 10-30% most of the time.Peer reviewe

    Evaluation of the impact of wood combustion on benzo[a] pyrene (BaP) concentrations; ambient measurements and dispersion modeling in Helsinki, Finland

    Get PDF
    Even though emission inventories indicate that wood combustion is a major source of polycyclic aromatic hydrocarbons (PAHs), estimating its impacts on PAH concentration in ambient air remains challenging. In this study the effect of local small-scale wood combustion on the benzo[a] pyrene (BaP) concentrations in ambient air in the Helsinki metropolitan area in Finland is evaluated, using ambient air measurements, emission estimates, and dispersion modeling. The measurements were conducted at 12 different locations during the period from 2007 to 2015. The spatial distributions of annual average BaP concentrations originating from wood combustion were predicted for four of those years: 2008, 2011, 2013, and 2014. According to both the measurements and the dispersion modeling, the European Union target value for the annual average BaP concentrations (1 ngm(-3) ) was clearly exceeded in certain suburban detached-house areas. However, in most of the other urban areas, including the center of Helsinki, the concentrations were below the target value. The measured BaP concentrations highly correlated with the measured levoglucosan concentrations in the suburban detached-house areas. In street canyons, the measured concentrations of BaP were at the same level as those in the urban background, clearly lower than those in suburban detached-house areas. The predicted annual average concentrations matched with the measured concentrations fairly well. Both the measurements and the modeling clearly indicated that wood combustion was the main local source of ambient air BaP in the Helsinki metropolitan area.Peer reviewe

    Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest

    Get PDF
    The concentrations of terpenoids (isoprene; monoterpenes, MTs; and sesquiterpenes, SQTs) and oxygenated volatile organic compounds (OVOCs; i.e. aldehydes, alcohols, acetates and volatile organic acids, VOAs) were investigated during 2 years at a boreal forest site in Hyytiala, Finland, using in situ gas chromatograph mass spectrometers (GC-MSs). Seasonal and diurnal variations of terpenoid and OVOC concentrations as well as their relationship with meteorological factors were studied. Of the VOCs examined, C-2-C-7 unbranched VOAs showed the highest concentrations, mainly due to their low reactivity. Of the terpenoids, MTs showed the highest concentrations at the site, but seven different highly reactive SQTs were also detected. The monthly and daily mean concentrations of most terpenoids, aldehydes and VOAs were highly dependent on the temperature. The highest exponential correlation with temperature was found for a SQT (beta-caryophyllene) in summer. The diurnal variations in the concentrations could be explained by sources, sinks and vertical mixing. The diurnal variations in MT concentrations were strongly affected by vertical mixing. Based on the temperature correlations and mixing layer height (MLH), simple proxies were developed for estimating the MT and SQT concentrations. To estimate the importance of different compound groups and compounds in local atmospheric chemistry, reactivity with main oxidants (hydroxyl radical, OH; nitrate radical, NO3; and ozone, O-3) and production rates of oxidation products (OxPRs) were calculated. The MTs dominated OH and NO3 radical chemistry, but the SQTs greatly impacted O-3 chemistry, even though the concentrations of SQT were 30 times lower than the MT concentrations. SQTs were also the most important for the production of oxidation products. Since the SQTs show high secondary organic aerosol (SOA) yields, the results clearly indicate the importance of SQTs for local SOA production.Peer reviewe

    Long-term total OH reactivity measurements in a boreal forest

    Get PDF
    Corrigendum: The legend in Fig. 6e has been mislabeled. The gray colorcorresponds to “Missing” and the other colors should havecorresponded to the same species as in Fig. 6f. The figure,which is also the key figure of the article, can be found belowwith the correct legend.Total hydroxyl radical (OH) reactivity measurements were conducted at the second Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II), a boreal forest site located in Hyytiala, Finland, from April to July 2016. The measured values were compared with OH reactivity calculated from a combination of data from the routine trace gas measurements (station mast) as well as online and offline analysis with a gas chromatographer coupled to a mass spectrometer (GC-MS) and offline liquid chromatography. Up to 104 compounds, mostly volatile organic compounds (VOCs) and oxidized VOCs, but also inorganic compounds, were included in the analysis, even though the data availability for each compound varied with time. The monthly averaged experimental total OH reactivity was found to be higher in April and May (ca. 20 s(-1)) than in June and July (7.6 and 15.4 s(-1), respectively). The measured values varied much more in spring with high reactivity peaks in late afternoon, with values higher than in the summer, in particular when the soil was thawing. Total OH reactivity values generally followed the pattern of mixing ratios due to change of the boundary layer height. The missing reactivity fraction (defined as the difference between measured and calculated OH reactivity) was found to be high. Several reasons that can explain the missing reactivity are discussed in detail such as (1) missing measurements due to technical issues, (2) not measuring oxidation compounds of detected biogenic VOCs, and (3) missing important reactive compounds or classes of compounds with the available measurements. In order to test the second hypothesis, a one-dimensional chemical transport model (SOSAA) has been used to estimate the amount of unmeasured oxidation products and their expected contribution to the reactivity for three different short periods in April, May, and July. However, only a small fraction (<4.5 %) of the missing reactivity can be explained by modelled secondary compounds (mostly oxidized VOCs). These findings indicate that compounds measured but not included in the model as well as unmeasured primary emissions contribute the missing reactivity. In the future, non-hydrocarbon compounds from sources other than vegetation (e.g. soil) should be included in OH reactivity studies.Peer reviewe
    corecore